4,241 research outputs found

    A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia

    Get PDF
    This paper outlines a methodology for semi-parametric spatio-temporal modelling of data which is dense in time but sparse in space, obtained from a split panel design, the most feasible approach to covering space and time with limited equipment. The data are hourly averaged particle number concentration (PNC) and were collected, as part of the Ultrafine Particles from Transport Emissions and Child Health (UPTECH) project. Two weeks of continuous measurements were taken at each of a number of government primary schools in the Brisbane Metropolitan Area. The monitoring equipment was taken to each school sequentially. The school data are augmented by data from long term monitoring stations at three locations in Brisbane, Australia. Fitting the model helps describe the spatial and temporal variability at a subset of the UPTECH schools and the long-term monitoring sites. The temporal variation is modelled hierarchically with penalised random walk terms, one common to all sites and a term accounting for the remaining temporal trend at each site. Parameter estimates and their uncertainty are computed in a computationally efficient approximate Bayesian inference environment, R-INLA. The temporal part of the model explains daily and weekly cycles in PNC at the schools, which can be used to estimate the exposure of school children to ultrafine particles (UFPs) emitted by vehicles. At each school and long-term monitoring site, peaks in PNC can be attributed to the morning and afternoon rush hour traffic and new particle formation events. The spatial component of the model describes the school to school variation in mean PNC at each school and within each school ground. It is shown how the spatial model can be expanded to identify spatial patterns at the city scale with the inclusion of more spatial locations.Comment: Draft of this paper presented at ISBA 2012 as poster, part of UPTECH projec

    Helicopter simulation validation using flight data

    Get PDF
    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator

    Phosphorylation of CENP-A on serine 7 does not control centromere function

    Get PDF
    CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function

    Molecular dynamics simulations of lead clusters

    Full text link
    Molecular dynamics simulations of nanometer-sized lead clusters have been performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf 269/270}, 1109 (1992)). The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favoured of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favoured for 600-4000 atom clusters. Larger clusters favour crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other minor changes for publicatio

    Neutrino flavour relaxation or neutrino oscillations?

    Full text link
    We propose the new mechanism of neutrino flavour relaxation to explain the experimentally observed changes of initial neutrino flavour fluxes. The test of neutrino relaxation hypothesis is presented, using the data of modern reactor, solar and accelerator experiments. The final choice between the standard neutrino oscillations and the proposed neutrino flavour relaxation model can be done in future experiments

    Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity

    Full text link
    We present the results of measurements of the solar neutrino capture rate in gallium metal by the Russian-American Gallium Experiment SAGE during slightly more than half of a 22-year cycle of solar activity. Combined analysis of the data of 92 runs during the 12-year period January 1990 through December 2001 gives a capture rate of solar neutrinos with energy more than 233 keV of 70.8 +5.3/-5.2 (stat.) +3.7/-3.2 (syst.) SNU. This represents only slightly more than half of the predicted standard solar model rate of 128 SNU. We give the results of new runs beginning in April 1998 and the results of combined analysis of all runs since 1990 during yearly, monthly, and bimonthly periods. Using a simple analysis of the SAGE results combined with those from all other solar neutrino experiments, we estimate the electron neutrino pp flux that reaches the Earth to be (4.6 +/- 1.1) E10/(cm^2-s). Assuming that neutrinos oscillate to active flavors the pp neutrino flux emitted in the solar fusion reaction is approximately (7.7 +/- 1.8) E10/(cm^2-s), in agreement with the standard solar model calculation of (5.95 +/- 0.06) E10/(cm^2-s).Comment: English translation of article submitted to Russian journal Zh. Eksp. Teor. Fiz. (JETP); 12 pages, 5 figures. V2: Added winter-summer difference and 2 reference

    Unknowns after the SNO Charged-Current Measurement

    Get PDF
    We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement can not fix the fraction of solar νe\nu_e oscillating to sterile neutrinos. The large uncertainty in the SSM 8^8B flux impedes a determination of the sterile neutrino fraction.Comment: Version to appear in PRL; includes analysis with anticipated SNO NC measuremen

    Neutrino Experiments: Status, Recent Progress, and Prospects

    Get PDF
    Neutrino physics has seen an explosion of activity and new results in the last decade. In this report the current state of the field is summarized, with a particular focus on progress in the last two years. Prospects for the near term (roughly 5 years) are also described.Comment: 14 pages, 10 figures, proceedings of plenary talk at EPS HEP 2007 Conference, Manchester, UK. Updated with citation added to Figure 1

    Entropic effects on the Size Evolution of Cluster Structure

    Full text link
    We show that the vibrational entropy can play a crucial role in determining the equilibrium structure of clusters by constructing structural phase diagrams showing how the structure depends upon both size and temperature. These phase diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure
    • …
    corecore